
ABSTRACT
Spatial hypertext systems typically assume that when
objects are placed in proximity as a spatial aggrega-
tion, at least some part of each object will be visible,
allowing an object to be selected by clicking on a visi-
ble part. This presents problems when an object be-
comes completely occluded. This paper presents vari-
ous user interface behaviors which seek to solve the
problem of discovery and exposure of completely oc-
cluded objects. Behaviors are divided into current be-
haviors, discovery behaviors, and exposure behaviors.
Finally general issues are discussed, such as screen ge-
ometry requirements, pluggability, and negotiation
among objects for user interface resources.

INTRODUCTION
Spatial hypertext systems, such as VIKI [4], CAOS
[5], and VKB [8] provide facilities for implicit or
emergent structure by supporting spatial proximity as a
form of association. The most intimate form of prox-
imity is an overlay, in which items are placed on top
of one another. Nevertheless, existing spatial hypertext
systems provide only very weak support for overlays,
since they assume that some part of each element in a
spatial aggregate is alwaysvisible where it can be se-
lected by clicking with the mouse. The problem, in a
nutshell, is that when elements are overlaid an element
can become completely occluded. Some explicit form
of user interface behavior is necessary so that such ele-
ments can be discovered and accessed. This paper pre-
sents several such candidate behaviors. Most of these
behaviors have in fact not been implemented; they are
being presented here in the hope that spatial hypertext
system implementers will find their ideas fruitful for
incorporating into future systems.

In the examples that follow, figures illustrating user in-
terface behaviors all refer to the same “baseline” spa-
tial overlay, as shown in Figure 1. Figure 1 shows
three VKB-like collections overlaid; the titles of two
of them (“Anti-Conjunctive Drift” and “Sub-screen-
ing” are visible, while a tiny sliver from the third col-
lection is just barely visible behind the other two.
Within each collection are individual objects which

Figure 1
Three overlaid collections are shown, with only a sliver
of the third visible at right. Each collection has two or
more objects. All other figures in this paper refer to this
overlay, with various behaviors to discover and show
the objects.

Figure 2
The objects from Figure 1 spread apart

User Interface Behaviors for Spatially Overlaid
Implicit Structures

Jim Rosenberg
555 Davidson Road

Grindstone, Pa 15442
E-mail: jr@amanue.com

are also heavily overlaid, so in fact there are 3 collec-
tions and 7 individual objects represented. Figure 1
shows only a single individual object readably; it is ex-
actly how to discover and display the hidden objects
that is the subject of this paper. Figure 2 shows the ob-
jects spread apart so that each one is visible. (Spread-
ing is an important specific behavior, which will be
discussed below.)

CURRENT BEHAVIORS
Individual Selection
All current spatial hypertext systems allow an object to
be selected by clicking on some visible portion of it.
Clearly this leaves completely unsolved the problem of
selecting an object which is completely occluded.
VKB allows selection of an occluded object by means
of an object hierarchy viewwhich is separate from the
spatial view. This paper addresses methods by which
occluded objects may be selected within a spatial
view.

Transparency
VKB allows the user to make objects transparent. Fig-
ure 3 shows the result of making all objects in Figure 1
transparent. As is readily seen, the result may be artis-
tically interesting from a visual point of view, but does
not contribute to the problem of navigating to and se-
lecting specific objects.

DISCOVERY BEHAVIORS
Discovery behaviors alter the appearance of the visual
workspace so that the location of hidden objects may
be revealed; typically these behaviors do not show the
entire contents of the objects revealed.

The Frame X-ray
When the Frame X-ray behavior is invoked, a section
of the visual workspace is selected and all objects in
that section are rendered transparently, with borders
intact but no “content”. Figure 4 shows the results of
the Frame X-ray applied to Figure 1. While the objects
in Figure 3 are almost indiscernible one from another,
it is surprisingly easy to pick out individual objects in
Figure 4. Note in particular that the hindmost collec-
tion is quite easy to spot. The idea of the Frame X-ray

display is that object borders are available for selec-
tion even on objects that are many layers down.

While the Frame X-ray concept is very simple to un-
derstand and should be fairly easy to implement at the
application level, it does have some clear draw-
backs. (1) While the existence of objects is made
clear, they are not differentiated one from another by
content. (Though border color distinctions would be
available.) (2) The behavior it introduces is likely to
be highly modal. An object whose outline is revealed
in a Frame X-ray display must be selectable. I.e. inter-
activity of the visual workspace must be preserved
with some degree of orthogonality with respect to
Frame X-ray display vs. normal display. This compli-
cates the user interface; designers may have strong
opinions about modality. (3) The Frame X-ray display
itself is confusing if objects are highly aligned geo-
metrically.

The Core-Drill
The core-drill is a moveable geometric region of the
screen — presumably a rectangle — which has popped
up next to it a display of names of all the objects it in-
tersects. This is illustrated in Figure 5. When an object
from the menu is selected, it is brought to the top; if
that object is part of a collection then presumably the
whole collection is brought to the top. Note the menu
in Figure 5 is shown as “smart” about collections: ob-
jects inside a collection are shown indented under the
collection name.

The core-drill allows a very effective form of naviga-
tion of the visual space, in spite of a great density of
overlays; if the associated pop-up menu has scroll
bars, then there is no limit to the amount of overlaying
that can be navigated. However, there is one obvious
drawback to the core-drill: to be effective, all objects
must have names. This is a very major issue. Spatial
hypertext was created in the first place to avoid the
problem of premature commitment to structure [3];
premature commitment tonamingis not all that differ-
ent from premature commitment to structure. Figure 5
shows some names that were “manually” created. Of
course anagent could create names for objects dy-

Figure 4 — Frame X-ray
Objects from Figure 1 rendered transparently but with
only their borders showing

Figure 3 — Transparency
All objects from Figure 1 rendered transparent

namically — which might work well if all objects are
text objects — but there remains the problem of how
names would be created for non-text objects, such as
graphic images or multimedia objects.

The core-drill also has modal issues; presumably there
is an interface behavior or keyboard shortcut that
causes it to appear and disappear, and modality of
dragging around or resizing the core-drill vs. “normal”
behavior of the spatial workspace could be tricky.

The Glass-Bottom Boat
The Glass-Bottom Boat is a special window which
“slices through” the layering of objects on the visual
workspace to reveal whatever may be present several
layers underneath the surface. This window has ex-
plicit gadgets to raise it or lower it one layer, and an
indication / setting to show how many layers down
from the surface of the workspace it is. The Glass-Bot-
tom Boat is quite attractive from a modality point of
view: presumably it acts just like any other window,
and within the sub-layer it reveals in its contents,
events are passed through exactly as if that layer was
on top. I.e. user interface behavior inside the Glass-
Bottom Boat window is identical to behavior were the
same contents to be part of the top layer. In this sense
the Glass-Bottom Boat is not modal, and uses no inter-
face resources that might be desired for some other
purpose. Alas, this very power reveals the main weak-
ness of this concept: in order to be implemented prop-
erly it might have to be located in the native operating
system windowing system itself. Commercially viable
windowing systems are not normally accessible to
such interventions. For windowing systems imple-
mented at the application level (e.g. Smalltalk) it
might be feasible, however. The Glass-Bottom Boat is
illustrated in Figure 6.

In spite of the simplicity of this concept, there are
likely to be some surprises if it is actually imple-
mented. Consider a Glass-Bottom Boat window that is
fairly large, and which is several layers down, as
shown in Figure 6. Suppose an object is selected from
inside the Glass-Bottom Boat. To what layer should
the Glass Bottom Boat window move? If (as discussed
above) the interface inside the Glass-Bottom Boat
works “identically” to the normal interface, the se-
lected object moves to “the top”. What is the top? Is it
the top with respect to the current position of the
Glass-Bottom Boat, or the top of the entire windowing
system? If the object moves to the top of the entire
windowing system, then we have the paradox that it
might disappear from the Glass-Bottom Boat! Should
the layer of the Glass-Bottom Boat then follow the se-
lected object? Should the Glass-Bottom Boat auto-
matically close? User preferences may need to be con-
sulted to answer such questions.

EXPOSURE BEHAVIORS
Whereas the discovery behaviors discussed above tend
to simply identify where a possibly occluded element
in an overlay may be found, exposure behaviors tend
to expose the entirety of an element. (Actually the
Glass-Bottom Boat is a hybrid that could be classified
either as an exposure behavior or a discovery behav-
ior.)

The Frame Stack
When the mouse approaches an overlay having this
behavior, a stack of frames is displayed, one for each
element of the overlay. These frames serve as “On
MouseOver” hot-spots to allow navigation of each
member of the overlay; note that the frame stack ex-
plicitly embeds thepeer structureof the overlay. The
frame stack is illustrated in Figure 7. The frame stack

Figure 5 — The Core-Drill
The small rectangle is moveable on the screen, and
causes a pop-up menu of all intersected objects to ap-
pear. The menu is shown with “smart indentation” for
collection membership.

Figure 6 — The Glass-Bottom Boat
The “GBB” window slices through the layering of the
visual workspace to reveal a view 4 layers deep. Within
this window the interface works as it would were the re-
vealed layer on top. E.g. the object underneath the
“conjunctive drift works” object could be selected just
by clicking.

concept has been implemented in specific literary
works [6], though no authoring environments make it
easy to implement as an “off-the-shelf” behavior. The
frame stack concept works well with nested collec-
tions, since it allows a frame stack to be opened inside
an outer frame stack. One drawback to the frame stack
concept is that it is quite expensive in terms of screen
real estate.Assuming all frames in one stack are the
same size, this must be large enough to accommodate
the largest element — with sufficient room for a bit of
margin. Note that as rendered here, if a frame stack
were to be opened on the contents of the collection
shown on top in Figure 7, there would not be enough
room to fit all the frames inside the current collection
boundary.

The Spread
This behavior was explored by Mander et al [2]; the
spread simply spreads out members of a pile so that all
of them are visible. Figure 2 shows a “recursive
spread” of the example pile used throughout this pa-
per. Spreading uses a technique which may be called
co-presentation, which is discussed in detail in [7].
While the simplicity of spreading is appealing, there
are a number of issues with this behavior. It appears
that for the foreseeable future, screen real estate will
always be in short supply; what happens when a pile
needs to be spread out over more real estate than is
available? In this case we will still have members of
the pile potentially occluding one another, which
means some other behavior will be needed. When piles
are nested, presumably each collection would have to
occupy a disjoint space (as in Figure 2) with spreading
inside that space. This explodes the space requirements
significantly.

The Viewing Cone
Mander et al presented another idea for navigating
piles, which they termed aviewing cone. Their imple-
mentation of piles showed a collapsed pile as a 3-di-

mensional stack so that an edge from every member of
the pile is visible. The viewing cone expands a par-
ticular member of the pile to a thumbnail or larger
view. Again, it is not clear how this would work with
nested piles, and also has the problem that at least
some part of each member of the pile must be visible;
the viewing cone cannot locate an object if it is com-
pletely occluded.

Geometric Rectification
There are many ways this behavior can be imple-
mented; it is really a special form of spread, except
that parts of objects may still be overlaid. At least one
form of this behavior is widely available: many multi-
window GUI applications have a “cascade” option for
viewing windows, that arrays the windows so that their
title bars are all visible as a descending “slant”. This
behavior has many of the issues of spreading.

GENERAL BEHAVIOR ISSUES
There are several general issues that pertain to all of
these behaviors.

Screen Geometry Requirements
In a system like VKB, a collection is assumed to have
a particular size, which is a property of the collection;
it can also bezoomedto occupy the full available
screen area. It is clear that several of the behaviors dis-
cussed above may have additional conditional require-
ments for screen real estate. Spreading requires
enough real estate for all items to become exposed; the
frame stack requires enough real estate to show a
frame for each element of a pile, etc. How does an ob-
ject such as a pile communicate to the user interface
system how much real estate it requires for some be-
havior which will only occur when the user initiates
some particular action? How does the user interface
system communicate to an object how much screen
real estate is available?

Pluggab ility
Ideally, user interface behaviors of the kind discussed
here should be pluggable; as new behaviors are in-
vented it would be wonderful if they can be imple-
mented in existing systems without having to com-
pletely reimplement a system. Of course this requires a
framework, which is a significant effort. The Model-
View-Controller Paradigm [1] represents a classical
effort to implement pluggable user interface behav-
iors; it is complex and in spite of frequent revivals of-
ten not used.

Spatial hypertext systems may have special issues with
regard to pluggable behaviors. The whole rationale of
spatial hypertext is based on supporting emergent and
ambiguous structure. An object may be placed “near”
another object to indicate an ambiguous or not-yet-de-

Figure 7 — The Frame Stack
This shows the frame stack “opened” to the middle col-
lection. The frames (rectangles) act as “On Mouse-
Over” hot-spots: as the cursor moves to one of the
other frames in the stack, that element moves to the
top.

fined relationship to that object; this association might
not be represented by any persistent structure, but
might be computed on the fly, based on criteria that
can change depending on what the user does. To the
extent that user interface behaviors have geometry re-
quirements, such requirements may have interactions
with such on-the-fly computations. How do these com-
municate? For example: computation of available real
estate may be affected by what counts as “near” in
spatial parsing algorithms. If a spread is supposed to
avoid overlaying a nearby collection, the available real
estate for the spread is constrained not only by the ac-
tual real estate occupied by the nearby collection, but
by a surrounding area which the spatial parser would
“count” as part of the collection. Thus a spatial parser
would have to respond not only to requests to indicate
what objects are “in” an aggregation, but also whatar-
eas include objects thatwould beconsidered “in” an
aggregation just by being present in that area.

Behavior Negotiation
A common theme of user interface behaviors is that
space requirements can vary depending on the state of
an object. An object which is under active investiga-
tion may be “expanded”, and when not receiving atten-
tion may be “collapsed”. Current spatial hypertext sys-
tems do not supportnegotiationof objects for screen
real estate. For instance, in VKB it is assumed that
when a collection needs attention, it can be expanded
to fill the whole screen — eliminating from view “sib-
ling” collections. A system of negotiation would allow
an object that needs more screen real estate to obtain it
by a variety of means. If expanding the collection to
the full bounding box of all objects in that collection
does not collide with the space of any other object, it
could be expanded to just that amount of space, with
no impact on other objects. If not enough real estate is
available, nearby objects could be “asked” to collapse.
Finally, if insufficient real estate is still not available,
objects could be overlaid. It goes without saying that
the design of a protocol whereby such negotiation
would occur is a significant undertaking.

The concept of spatial hypertext includes the idea that
certain objects need to be seen “together” — if at all
possible. This calls for some subtlety in the design of
the user interface when these same objects (alas)com-
pete for user interface resources. The requirement of
objects for “coattention” has unexplored consequences
for user interfaces.

REFERENCES
1. Krasner, G. E., and Pope, S. T., “A Cookbook for
Using the Model-View-Controller User Interface Para-
digm in Smalltalk-80”, Journal of Object Oriented
Programming, August/September, 1988, 26-49.

2. Mander, Salomon, Richard, Gitta, and Wong, Yin
Yin, “A ‘Pile’ Metaphor for Supporting Casual Or-
ganization of Information”, CHI ’92, ACM, New
York, 1992, pp. 627-634.

3. Marshall, Catherine C. and Rogers, Russell A.,
“Two Years before the Mist: Experiences with Aq-
uanet”,ECHT '92 Proceeding of the ACM Conference
on Hypertext, ACM, New York, 1992.

4. Marshall, Catherine C., Shipman, Frank M. III, and
Coombs, James H., “VIKI: Spatial Hypertext Support-
ing Emergent Structure”, European Conference on Hy-
permedia Technology 1994 Proceedings, ACM, New
York, 1994, pp. 13-23.

5. Reinert, Olav, Bucka-Lassen, Dirk, Pedersen, Claus
Aagard, and Nürnberg, Peter J., “CAOS, A Col-
laborative and Open Spatial Structure Service Compo-
nent with Incremental Spatial Parsing”,Hypertext 99:
The Proceedings of the Tenth ACM Conference on Hy-
pertext and Hypermedia, ACM, New York, 1999, pp.
49-50.

6. Rosenberg, Jim,The Barrier Frames: Finality crys-
tal shunt curl chant quickening giveaway stare, East-
gate Systems, Watertown, 1996, sample
http://www.well.com/user/jer/inter_works.html#Bar-
rier_frames.

7. Rosenberg, Jim, “And And: Conjunctive Hypertext
and the Structure Acteme Juncture”,Hypertext '01:
Proceedings of the 2001 ACM Conference on Hyper-
text, ACM, New York, 2001.

8. Shipman, Frank M. III, Hsieh, Haowei, Maloor,
Preetam, and Moore, J. Michael, “The Visual Knowl-
edge Builder: A Second Generation Spatial Hyper-
text”, Hypertext '01: Proceedings of the 2001 ACM
Conference on Hypertext, ACM, New York, 2001.

