
ABSTRACT
This paperpresentsa personalspatialhypertextauthor-
ing systemcalledTheFrameStackProject,implemen-
tedasa lightweight setof classesin the genericobject
frameworkMorphic, availablein the programmingen-
vironmentSqueak.Morphic providesa kind of off-the-
shelf toolkit of objectsand behaviorsextremelyrelev-
ant to spatialhypertext.In this project,run-timevs.au-
thoring behavioris a stateproperty of individual ob-
jects in a highly granularway. A key goal is the sup-
port of feral structure,in which objectscanbe created
looseon thedesktop,without assigningthemanystruc-
tural destination.This providesan implementationof
aninteractiveversionof thepoet’snotebook.Thegran-
ular approachto objectauthoringsupports“interactive
writing” in the truest sense of the word.

INTRODUCTION
This paperpresentsanongoingprojectcalled(loosely)
The FrameStack Project.The term ‘frame stack’ de-
scribesan interfaceconceptwhich I have beenusing
for a numberof years,and havedescribedpreviously
[9]. It providesa userinterfacefor overlayingword ob-
jectson top of oneanother,while still allowing themto
be read legibly. In the past, “frame stack” has been
moreof a conceptualartistic frameworkthanan actual
implementation;until recentlyit would not havebeen
possibleto examineany of my finishedworks andun-
cover actualobjectsidentifiable as frame stacks.This
paperdescribesthe implementationof the frame stack
conceptas actual working code. It has resultedin a
kind of personalspatialhypertextauthoringsystem,but
of asomewhatdifferentkind thanusual.Ratherthanan
“application”, within which spatial hypertextdevelop-
menttakesplace,theFrameStackProjectconsistsof a
lightweightsetof classesthatoperateswithin a generic
object desktop.This allows word objects � complete
with interactivebehavior� to besimply “looseon the
desktop” � a conceptdiscussedbelow as feral struc-
ture. Feral structureis closely relatedto the classical
philosophyof spatialhypertext:that theusermusthave
theability to postponecreationof structure.Thespecif-
ic structuraloperationwhich is postponedin thecaseof
a feral object is parenting. Accreting of “parentless”
objectsis a methodof facilitating, in software,a time-

honoredcentral part of poetic practice:scrapcollect-
ing. Most poetskeepsomeform of notebook,in which
scrapsare accumulated,often without any clear idea
what theultimatedestinationof thescrapwill beat the
time it is first written down. A scrapis thus an inher-
ently parentless object.

Thegenericobject frameworkwithin which the Frame
Stack Project is realized is called Morphic [12] (dis-
cussedbelow),andis providedoff theshelf in thepro-
gramming environmentSqueak [3]. Of course it is
somewhatdisingenuousto describethis approachas
“systemless”— after all Squeakcould certainly be
considereda system. But can it be considereda
“hypertextsystem”?Most researcherswould probably
agree this would be a stretch.

MORPHIC
Morphic is a userinterfaceparadigmproviding a wide
varietyof graphicalfacilities. A “morph” is aninstance
of the classMorph, or one of its subclasses.Morphs
cancontainothermorphs;whena morph is movedon
the desktop, its submorphsmove with it. When a
morphis selectedby a mouse-upcombinedwith a key-
boardmodifier (which dependson the operatingsys-
tem) — e.g. “command-click” on the Macintosh— a
set of icons called a “halo” appears.(SeeFigure 1).

Hypertext in the Open Air: A Systemless Approach to
Spatial Hypertext

Jim Rosenberg
555 Davidson Road

Grindstone, Pa 15442
E-mail: jr@amanue.com

Figure 1

A set of icons called a “halo” is popped up surrounding
a morph by clicking a morph with a keyboard modifier.
These icons provide a user interface to standard
morphic behavior for any morph.

The halo mechanismprovidesan interfaceto a set of
genericbehaviorsof all morphs,which subclassesare
free to override if necessary.Among thesebehaviors
are: moving, pickup, resizing,menu,iconify, and de-
lete.

Pickup
When a morph is picked up, e.g. by draggingthe top
middle icon fron the halo, this meansnot only moving
it, but in additionwhenthemouseis released,dropping
it into a targetmorph,so that the morphbeing picked
up becomesa submorph of the target. However,
morphsarefree to rejectdrops.It is interestingto con-
trast this conceptwith the way that aggregationworks
in familiar spatialhypertextsystemssuchas VIKI [8]
or VKB [10]. VKB, for instance, provides a mechanism
calledCollections.In orderto aggregatespatialobjects,
they are placed“into” a collection. A bit of text, by
contrast,“isn’t” a collection; in VKB a text object is a
“terminal node” in the structure,and cannothavesub-
objects.Morphic, on the other hand,assumesthat (1)
any objectmaycontainsubobjectsand(2) thedecision
whetheror not an object shouldcontainsubobjectsis
made “on the fly”. (To a poet this means:one can
changeone’s mind about this!) I.e. for a morph to
changestatein eitheracceptingor rejectingpickup,or
to containor notcontainanothermorphasa submorph,
is not a changeof class.By contrast,if a phrasein
VKB is treatedasan “object” (terminalnode)and the
documentauthorsuddenlydecidesthis phraseneedsto
havesubobjects,“changing” the phraseso this is pos-
sibleis a very heavy-weightactivity. Theusermust(1)
createa new collection; (2) copy the phraseinto the
title of the collection, (3) delete the original phrase. The
Morphic concept of submorphsmay be said to be
closerto thespirit of spatialhypertextthana structural
conceptlike collections,in that thedecisionwhetheran
object is to “have” subobjectscan be postponed.(As
we speakrepeatedlyin spatial hypertext discussions
aboutpostponingtherealizationof structure,it mustbe
emphasizedthat at themomentwhenstructureprocras-
tination ends,conversionto structureneedsto be as
light-weight an activity in the user interface as pos-
sible!)

Morphic makes a distinction between a morph ac-
cepting drops and a morph containing submorphs.
Rejectingdropsis considereda userinterfaceproperty;
howeverall morphscontainthe mechanismneededto
containsubmorphs,andevenif a morphrejectsdrops,
submorphscan still be addedprogrammaticallyby a
Smalltalkmethod.It shouldbenotedthatMorphic does
contain one serioususer “hazard”: if a morph is en-
abledfor receivingdrops(in order to “build it up” in-
teractively),and then that morph becomes“finished”,
the usermay forget to turn off acceptanceof drops.If
this morph becomesembeddedin a larger morph, it
may“attract” adropthattheuserthoughtwasgoingin-

to the largermorph.I.e. in theversionof Morphic used
for this projectthereis poor visual identificationof the
target of a drop.

Event Handling
An instanceof a subclassof Morph can“register” with
theMorphic eventhandlingsystemthat it wishesto re-
ceiveevents,suchase.g.mouseEnter.In this casethe
objectwill be senta mouseEntermessage.This allows
any morph to createits own user interfacebehavior.
There is an important point here. Unlike complex
paradigmssuch as the Model View Controller para-
digm [5], a userinterfacedesigneremployingMorphic
needonly subclassat a single point in the classhier-
archy.Thus,to createtheclassFrameStack,it wasonly
necessaryto subclassRectangleMorph.An MVC ap-
proachwould requiresubclassingat three places:for
the model,view and controller.Smalltalkpresentsthe
novicewith a gordianknot learningproblem:whereto
subclass?Most programmerslearna new languageby
writing code. But in Smalltalk, one cannot simply
“write a program”; all codemust go into classes,and
one cannotknow whereone’s classshould go in the
hierarchy without learning the hierarchy, which one
can’t do without learningSmalltalk ... The geniusof
Morphic is that it providesa readysetof classesavail-

Figure 2

The standard morph menu for a frame stack. Note the
“custom methods” at the bottom. Methods above “stop
playing” are inherited from the superclass, and ulti-
mately mostly from Morph.

ablefor subclassingwhosefunction is completelyintu-
itively clear.E.g. it was intuitively obviousthat some
of the important classesfor this project neededto be
subclasses of RectangleMorph.

Menus
A morph inheritsa “standardmenu”,but the program-
mer creatinga Morphic subclasscan easilycustomize
this. This providesan easymethodto attachan inter-
faceto one’sown classes.Figure2 showsthemenufor
theclassFrameStack.Theentriesat thebottomcorres-
pond to custom methods.E.g. reframe — the most
complex piece of code in this project — tells a
FrameStackto abandonits existing frames,makenew
onesfor eachof its submorphs,andresizeitself appro-
priately.

It is alsoworth commentingin moredetailon themenu
choiceseenin Figure2 “start playing”. Whena frame
stack is “playing”, as the mouseentersits boundary,
theframesfor thesubmorphsaremadevisible, andone
of the submorphsis selectedat randomto be on top.
The frames are opaque white, and are active
mouseEnterregions.As the mouseentersone of the
frames,it and its designatedmorph arebroughtto the
front, makingthemvisible. Whenthemouseleavesthe
boundaryof theframestack,all of theframesaremade
invisible. Whenthe framestackis not playing,it is im-
perviousto mouseEnter.In effect,“playing” constitutes
the run-time behavior of the frame stack object. The
point here is that unlike environmentslike Flash [6],
where authoring and run-time behavior are so com-
pletelyseparatethat theytakeplacein separateapplica-
tions (with widely divergent kinds of licensing!) in
Morphic a distinction (if needed)betweenauthoring
and run-time behaviorcan take place in a highly dy-
namicgranularfashionasa stateof individual objects.
Run-timebehaviorfor anobjectcanbe“left on” until it
“gets in the way”; at that point it canbe turnedoff for
that individual object. This subjectwill be discussed
further below.

STRUCTURE VS. PRESENTATION
It is customaryin hypertextthatstructureandpresenta-
tion shouldbeseparated.Following a link is a structur-
al operation.Theremay be a wide variety of ways of
presentingthis operationto the user,eventhoughthe
structuraloperationis in eachcasethe same.In spatial
hypertext,however,we take a different point of view.
Presentationis what “replaces” structure at a point
wheretheuseris not willing to committo structure.Or,
to put it somewhatdifferently, “spatial structure”and
presentationare inseparable.Thus for instancewhile
“nearby” is a presentationproperty, it is of essential
importancein replacinga structuralconceptin spatial
hypertext.Morphic providesa readystockof presenta-
tion abstractionswhich canbeusedby spatialhypertext
objectsasa kind of off-the-shelftoolkit. In this section

we review some of them.

“The Front”
Morphic providesa “layering order”; it knows which
objectsare in front of other objects,and can render
them appropriately.A morph can be brought to the
front or sentto the back.This operationdoesthe right
thing regardingthesubmorphhierarchy.E.g.sendinga
morph to “the back” sendsit behind all other sub-
morphsof thesameparent,but doesnot sendit behind
its owner. The presentationconcept of bringing a
morphto the front cansubstitutefor the structuralop-
erationof “navigatingto” themorph.For instance,con-
sider a “card interface”: to the user it appears that she is
navigatingamonga setof cards,which containvarious
objects.Someof theseact as buttons,which take the
user to other cards. Provided the “bottom layer” of
eachcard is arrangedto be opaque,this interfacecan
be implementedin Morphic by havingeachcardbe a
rectangularmorphof thesamesizeandsameorigin in
the coordinatesystemandthen “navigating to” a card
by simply bringingit to the front. Technically,theuser
is “at” all of the cards(at once)but from the point of
view of userexperience,theonly cardthat is visible is
the one on top (at the front, in Morphic terminology).

Using theability to bring objectsto the front asa sub-
stitute for structuralnavigationcan have sometricky
consequences.Justasan interfacecansuffer from con-
tentionover screenreal estate,therecanbe contention
for the front. For instance,whenbringingup a haloon
a morph,an inconvenientlyplacedframestackwhich
is playing may bring a frame in front of a halo.

Visibility
Hiding an object or making it visible is anotherway
thata presentationoperationmaysubstitutefor a struc-
tural navigation.Again, Morphicprovidestheability to
hideor showanymorph.(It is surprisingthathiding of
objects is not an operationcommonly supportedby
spatial hypertext systems.)

IMPLEMENTATION SPECIFICS
The hierarchyof classescreatedfor the FrameStack
Project is shown in Figure 3. The amountof code in
theseclassesis sosmall that it is analmostinfinitesim-
al fraction of the corpusof Squeak/ Morphic. I offer
this not asan apology,but ratherastestimonyto what
canbeaccomplishedby an individual cybertextauthor
using the “open-air subclassing”approachon top of a
rich generic object framework like Morphic. The
FrameStack interfaceis particular to my own artistic
practice; other writers will have drastically different
needs.It is unlikely that very many cybertextauthors
will find theFrameStackProjectcodedirectly useful;I
amoffering it moreasa kind of living exampleof what
can be accomplished using this method.

In thefollowing section,someof thekeyclassesimple-
mented in this project will be described.

FrameStack, FrameStackFrame
FrameStackis the “signatureclass” from which this
project takes its name. A frame stack is an object with a
rectangularboundaryandacollectionof submorphsfor
which the framestackactsas interface.The goal is to
provide an intuitive interface by which transparent
word objects can be overlaid in the samespace—
which would normally renderthemillegible — andal-
low individual objectsto be readby a set of opaque
“frames” that are controlledby mouseEnterhot-spots;
each frame correspondsto one of the word objects.
These frames are implemented by a class called
FrameStackFrame.Thesubmorphsfor which theframe
stackactsasaninterfacearenot “specially” designated
in any way; a frame stackidentifies theseasany sub-
morph which is not a FrameStackFrame.Thus a new
submorphcanbeaddedusinganymeanssupportedby
Morphic, without requiring any special code in
FrameStack.I.e. “authoring” a framestackis assimple
ascreatinga newemptyFrameStack(usingtheSqueak
desktop“new morph” menuentry), turning on “accept
drops” in the FrameStack,and then droppingmorphs
into it.

In the currentimplementation,a framestackis “refor-
matted”for a changeto its submorphpopulationby an
explicit reframemethod.(Futureversionsshouldprob-
ably do a reframeautomaticallyin responseto various
relevant events.) The reframe method, which was easily

the most complex in the whole project, discardsany
existing FrameStackFramesubmorphsand then recre-
atesthem, sizing them to their designatedsubmorph;
the boundary of the frame stack itself is also resized.

In addition to controlling whether a frame stack is
“playing” or not (discussedabove),anotherbehavior
implementedby FrameStackis a “freeze”. Normally
whena framestackis told to stopplaying, it will bein
a “closed” state.(All framestackframesareinvisible,
so that all the other submorphsarevisible andappear
overlaid.)If oneof the submorphsneedsto be edited,
havingthe framestackcontinueto play will interfere,
but the “layer” with the given submorphneedsto be
“open” sothesubmorphis easilyaccessiblefor editing.
Becausethe mouse is already used to “navigate”
amongthesubmorphsof a framestack,thekeyboardis
used to register a freeze. When initially created,a
frame stackdoesnot acceptkeystrokes,but it can be
told to do so.Onceacceptingkeystrokes,whena frame
stackis sentthe ‘f’ key from thekeyboard,it freezesin
its currentstate.Thisallowsthesubmorphfor thelayer
showing to be edited in place. (Typically editing occurs
usingoff-the-shelfbehaviorof Morphic; e.g.if theob-
ject in questionis text, it may be editedusingcustom-
ary text editing mousemovesandkeystrokes.)This is
consistentwith a deeply held philosophyof this pro-
ject, that authoringvs. run-time behaviorshouldbe a
statepropertyof individual objects, not of “the system”
or “environment” as a whole.

FrameStackRectangle
This classis usedto implementgrouping.An instance
of this classis a transparentrectangularareawith vari-
oussubmorphs;it is neededasa specificclassmainly
to allow groupingin sucha way that the mouseevents
are properly passedthrough to any frame stack sub-
morphs.

FrameStackCard
The actual cybertextsso far realizedin this environ-
menthaveusedan “outer interface”extremelysimilar
to the original card interfaceprovided by HyperCard
[2]. This interface assumesa non-scrolling fixed
“portal” which doesnot moveon screen;asthe reader
movesthrough the piece the contentof this portal is
changed.In theFrameStackProjectthereis no formal
conceptof portal. Rather,its appearanceis createdby
thecybertextauthorcreatinga setof framestackcards
which are all of the samesize and position on the
screen.This classimplementsa parent-childrelation-
ship among frame stack cards, using methods
seekParentandacceptChild.When a framestackcard
receivesacceptChild,a buttonis createdthatwill bring
the child to the front when clicked; the button is a
thumbnail imageof the child. (At the child thereis a
methodthat will set the magnificationscalefor creat-
ing this thumbnail.)An “up-button” is createdon the

(Array)
FrameStackRectArray

(Form)
FrameStackGlyphs

(PasteUpMorph)
FrameStackCard

(RectangleMorph)
FrameStack
FrameStackFrame
FrameStackRectangle

(SketchMorph)
FrameStackSketch

FrameStackScope
FrameStackThumbnail

(TextMorph)
FrameStackText

Figure 3

Class hierarchy created for the Frame Stack Project.
Classes shown in parentheses are off-the-shelf classes
provided with Squeak.

child, that when clicked will bring the parent to the
front.

Consistentwith anothermajor philosophyof this pro-
ject, a framestackcardmay haveno parent.(Thereis
also a method of FrameStackCardcalled unparent,
which will deletethe parentrelationshipand rendera
card parentless.)

FrameStackCardis a subclassof an importantMorphic
classcalledPasteUpMorph,alsoknown asa playfield.
This classis the basicform of Morphic “canvas”,and
provides many facilities for graphical editing. The
Squeakdesktop(knownasa “world”) is in fact a play-
field.

Fonts
Fontsareanextremelytricky issuein anydiscussionof
cybertextauthoringsystems.It is customaryamonghy-
pertext system designersto assumethat fonts are
someoneelse’sproblem;e.g. the nativeoperatingsys-
tem windowing systemis presumedto provide fonts,
the usermay havefonts of her own, etc. Scalableout-
line fonts,suchasTrueTypeor PostscriptType1 fonts,
area form of intellectualpropertysubjectto their own
systemof rights.A cybertextauthorwantingto control
theexactappearanceof thetext is thusconfrontedwith
a difficult dilemma: embeddingfonts in a cybertext
may createunpleasantrights problemsfor distributing
the cybertext.Technologieslike Flash seemto allow
distributionof cybertextswith embeddedfonts in ways
that have apparentlyavoidedthis problem,but at the
costof a heavy-weightdistinctionbetweenthe author-
ing environmentandtherun-timeenvironment.An im-
portantgoal of the FrameStackProjectwasto be able
to supportcreationof cybertextswith embeddedfonts
that the cybertextauthorcan edit. As of the time this
projectbegan,the native font systemof Squeakis bit-
mapped.The decision of whether to use bitmapped
ratherthan antialiasedfonts was one of the moreaes-
thetically difficult decisionsmadeduring this project.
In the end,a setof fonts wascreatedbasedon outline
fonts believedto be unencumbered;from these,screen
renderingswere importedinto a Squeakfont editor to
createbitmappedfonts with a closeaestheticresemb-
lanceto theeffectof antialiasedfontson screen.As the
Squeakfont systemevolves,the fonts usedwill prob-
ably change.

FERAL STRUCTURE
Thereis a greatdeal of researchinvolving integration
of hypertextsystemswith a largercomputingenviron-
ment, particularly in the OHS community.Hypertext
has certainly had a wider perspectivethan just “the
confines” of hypertext applicationsfor quite a long
time. Still, it is most commonfor hypertextobjectsto
be found inside hypertextsystems.While the Squeak

desktopis not the native operatingsystemdesktop—
thoughit couldbecomethenativeOSdesktop;see[11]
— it is certainly a “generic object desktop” in which
theusercouldspendtheentiretyof hertime andwhich
is not especiallydevotedto hypertext.The desktopis
the cyberspaceequivalentof the openair. A desktop
suchasthe SqueakWorld allows objectsto be simply
“loose” in the openair, muchasa physicaldesktopal-
lowsphysicalobjectsto belooseon its surface,without
beingplacedin a drawer.The appealof suchfreedom
is similar to the attractivenessof spatial hypertextit-
self. Among the features offered by feral structure are:

� Objects near at hand are presumably prioritized.

� A disposition of the object can be postponed.

� A persistentdesktopallows work to be resumedin
exactly the state it was left in a previous session.

It is particularlyimportantto notethat feral structureis
ideally suited to collecting cybertextualscrapswhere
thedestinationof thescrapis not known at the time it
wascollected.As mentionedabove,thereis a deephis-
torical affinity for poets in particular to write by a
methodthat in part involvesaccumulatingmaterialsin
notebooks.SystemssuchasFlash,with their extremely
heavy-weightdistinction betweenauthoringand run-
time, raise profound difficulties for collecting cyber-
textualscraps.Figure4 showsa screendumpof theac-
tual live Squeakdesktopfor my currentwork in pro-
gress.Note there are several objects placed on the
desktopwhereverI found it convenientto work with
them:someareframestacksor framestackrectangles,
someareframestacktexts.Note the objectsin the top
left corner. These are iconified morphs. The ones
marked “playfield” are frame stack cards which are
moreor lessfinished,but havenot yet beenintegrated
into any higher level of structure.

Long time usersof (say)VKB may wonderwhy there
is anydifferencebetweentheconceptof feral structure
as articulated here and the VKB “root collection”.
After all, in VKB no one is obliged to makecollec-
tions;onemayplaceall of one’sobjectsin theroot col-
lection. I.e. VKB allows a structurewhich is “flat”.
Whatis thedifferencebetweena flat structureandferal
structure?Perhapsonecouldarguethat this distinction
is simplehair-splitting,but the majordifferenceis that
anapplicationlike VKB is not a genericobjectsystem,
in which any kind of object (with any kind of
behavior!)can be placed.A VKB collection can only
containthekinds of objectsthathavebeenspecifically
implementedin VKB. It is not “the open air”, but
rather a very special atmospherein which only a
severelylimited varietyof creaturescanbreathe.While
it would be easyto imaginethe Squeakdesktopasthe
native OS desktop,this would not be possiblewith

VKB without a very significant amount of work.

Of coursea necessarycomponentof supportfor feral
structuremustbe theability to “capturethe feral anim-
als”: parentlessobjectswhich are simply looseon the
desktopmust be easy to move into a more defined
structuralplace,oncethat placehasbeendetermined.
The pickup mechanismof Morphic makesthis simple
enough that it does not intrude on the “aesthetic
stream” of making poetry.

Is the Native OS Desktop a Spatial Hypertext?
It canbearguedthatadesktopis not truly thecomputer
equivalentof theopenair unlessthatdesktopis theul-
timate “native” operatingsystemdesktop.That raises
an interestingquestion:shouldwe considernative OS
desktopsas“already” spatialhypertextsystems?Many
userscertainly place a great deal of information on
their desktops,andsomeusersbecomecompletelylost
if a desktop icon goes missing: they navigate not
through the file system, but spatially on the desktop.

Thereareno commercialoperatingsystemsthathavea
desktopwith the objectpowerof anythinglike evena
fragmentof Morphic. Perhapswe canlook forward to
this in the future.

USABILITY
The conceptof usability takeson an odd cast in the
context of a personalauthoring system.How should
theauthorof a personalauthoringsystemcarry out an
unbiased usability study? This is clearly impossible.

It will haveto suffice for me to simply offer anecdotal
evidence.Basedon a few monthsof creatingfinished
works in the FrameStackProject,I can say that total
elapsedtime to completesucha work is cut by a factor
of about 3 from my previousmethods.More import-
antly, (andevenmoreanecdotally,alas)the feeling of
composingin this environmentis substantiallydiffer-
ent thanit wasusingtools like HyperCard.Whenwrit-
ing in the Frame Stack Project, the word object is a true
object, and can easily becomea finished “interactive
scrap”duringa singlesession.By contrast,usingprevi-

Figure 4

Screen dump of current work, showing the live Squeak desktop for a poem in progress. Many of these objects are
not yet finished, and the ones that are finished have not yet been given a final “destination”. The objects are “feral”
because they have not yet been captured into structure. (Though some have internal structure.)

ous methodsthe objecthoodof what appearson the
screenas a word object is a mere facade;inside the
work there is no real object, and it might have taken
weeksafter all aestheticdecisionswere madebefore
there was any interactivity presentat all. Writing by
such methodsrelies on a completely non-interactive
documentwhich Bootz[1] callsthe texteauteur, which
provides a kind of implementationspecification for
how acybertextis to beassembled.While opinionscan
differ concerningwhat the term “interactive writing”
might mean,it is hardto call a writing processinteract-
ive if interactivity appears only at the end of a long pro-
cess,taking weeksor monthsin which thereareno in-
teractive objects present.

The intenselygranularindividual object natureof the
distinctionbetweenauthoringandrun-timeachievedin
theFrameStackProjectsimply givesa differentfeeling
to theactof writing. It allows interactivewriting in the
true sense of the word.

FUTURE WORK
In addition to the framestacks,my work alsoincludes
a formal structuringvia a diagramnotation which is
fundamentallyrelational. The result is structuresnot
unlike those achievedin Aquanet [7]. Currently the
Frame Stack Project does not support relations by
meansof any explicit classes.The relationsaresimply
drawn,graphically,using an off-the-shelfSqueakpro-
ject calledConnectors[4]. Thereneedsto beanexplicit
interfaceso that relationsin the FrameStack Project
are real objects.

Currentlythereis no methodof exportingthetext in all
FrameStackTextobjectsof a project. (This shouldbe
quite simple to implement using available code for
Squeak.)

As of this writing, I’ve completedthreefinishedpoetic
works in the FrameStackProject.The word ‘finished’
is usedherein aestheticterms;therearestill someopen
issuesregardinghow suchworks are to be published.
Also not yet investigatedareissuesof how to “harden”
Morphic for publication purposes..

ACKNOWLEDGMENTS
This work would not have beenpossiblewithout the
immensecontributionsof manyotherpeople,specific-
ally: Allan Kay et al for Squeak,John Maloney for
bringing Morphic to Squeak, Ned Konz for
Connectors,Boris Gaertnerfor his font editor, and of
courseCathyMarshall,FrankShipman,andmanyoth-
ers for the concept of spatial hypertext in the first place.

REFERENCES
1. Bootz,Philippe.“Le point devue fonctionnel:point
de vue tragique et programmepilote”. alire 10 /
DOC(K)S, MOTS-VOIR,Villeneuved’Ascq,1997,pp.

28-47.

2. Goodman, Danny, The Complete HyperCard
Handbook, Bantam Books, New York, 1987.

3. Ingalls,Dan,Kaehler,Ted,Maloney,John,Wallace,
Scott,andKay, Alan. “Back to theFuture:theStoryof
Squeak, a practical Smalltalk written in itself”,
Proceedingsof the ACM SIGPLAN Conferenceon
Object-Oriented Programming Systems,Languages
and Applications,ACM, New York, 1997, pp. 318-
326.

4. Konz, Ned, Connectors, http://bike-
nomad.com/squeak/index.html

5. Krasner,G. E., and Pope,S. T., “A Cookbookfor
Using the Model-View-ControllerUserInterfacePara-
digm in Smalltalk-80”, Journal of Object Oriented
Programming, August/September, 1988, 26-49.

6. Macromedia, Inc., Flash. San Francisco,
http://www.macromedia.com/support/flash/documentat
ion.html., 1995.

7. Marshall, CatherineC., Halasz,Frank G., Rogers,
RussellA. andJanssen,William C. Jr.,“Aquanet:a hy-
pertext tool to hold your knowledgein place”, Pro-
ceedingsof Hypertext‘91, ACM, New York, 1991,pp.
261-275.

8. Marshall,CatherineC., Shipman,FrankM. III, and
Coombs,JamesH., “VIKI: SpatialHypertextSupport-
ing EmergentStructure”,EuropeanConferenceon Hy-
permediaTechnology1994 Proceedings, ACM, New
York, 1994, pp. 13-23.

9. Rosenberg,Jim, “User Interface Behaviors for
SpatiallyOverlaid Implicit Structures”First Workshop
on Spatial Hypertext, Århus, 2001,
http://www.csdl.tamu.edu/~shipman/SpatialHypertext/
SH1/rosenberg.pdf.

10. Shipman,Frank M. III, Hsieh, Haowei, Maloor,
Preetam, and Moore, J. Michael, “The Visual
Knowledge Builder: A Second Generation Spatial
Hypertext”, Hypertext '01: Proceedingsof the 2001
ACM Conferenceon Hypertext, ACM, New York,
2001, pp. 113-122.

11. Smith,David A., Raab,Andreas,Reed,David, and
Kay, Alan, Croquet The User Manual, Viewpoints
ResearchInstitute, Glendale,2002, http://glab.cs.uni-
magdeburg.de/~croquet/downloads/Croquet0.1.pdf.

12. Smith, Randall B., Maloney, John, and Ungar,
David, “The Self-4.0 User Interface: Manifesting a
System-wideVision of Concreteness,Uniformity, and

Flexibility”, Proceedings of the Tenth Annual
Conference on Object-oriented Programming Systems,
Languages, and Applications, ACM, New York, 1995,
pp.: 47 - 60

